Well-Founded Semantics and the Algebraic Theory of Non-monotone Inductive Definitions

نویسندگان

  • Marc Denecker
  • Joost Vennekens
چکیده

Approximation theory is a fixpoint theory of general (monotone and non-monotone) operators which generalizes all main semantics of logic programming, default logic and autoepistemic logic. In this paper, we study inductive constructions using operators and show their confluence to the well-founded fixpoint of the operator. This result is one argument for the thesis that Approximation theory is the fixpoint theory of certain generalised forms of (non-monotone) induction. We also use the result to derive a new, more intuitive definition of the wellfounded semantics of logic programs and the semantics of ID-logic, which moreover is easier to implement in model generators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Logic for Non-Monotone Inductive Definitions

Well-known principles of induction include monotone induction and different sorts of nonmonotone induction such as inflationary induction, induction over well-founded sets and iterated induction. In this work, we define a logic formalizing induction over well-founded sets and monotone and iterated induction. Just as the principle of positive induction has been formalized in FO(LFP), and the pri...

متن کامل

A Logical Study of Some Common Principles of Inductive Definition and its Implications for Knowledge Representation

The definition is a common form of human expert knowledge, a building block of formal science and mathematics, a foundation for database theory and is supported in various forms in many knowledge representation and formal specification languages and systems. This paper is a formal study of some of the most common forms of inductive definitions found in scientific text: monotone inductive defini...

متن کامل

Predicate Introduction Under Stable and Well-Founded Semantics

This paper studies the tranformation of “predicate introduction”: replacing a complex formula in an existing logic program by a newly defined predicate. From a knowledge representation perspective, such transformations can be used to eliminate redundancy or to simplify a theory. From a more practical point of view, they can also be used to transform a theory into a normal form imposed by certai...

متن کامل

Analyzing the Structure of Definitions in ID-logic∗

ID-logic uses ideas from logic programming to extend classical logic with non-monotone inductive definitions. Here, we study the structure of definitions expressed in this formalism. We define the fundamental concept of a dependency relation, both in an abstract, algebraic context and in the concrete setting of ID-logic. We also characterize dependency relations in a more constructive way. Our ...

متن کامل

Inductive Situation Calculus

Temporal reasoning has always been a major test case for knowledge representation formalisms. In this paper, we develop an inductive variant of the situation calculus in ID-logic, classical logic extended with Inductive Definitions. This logic has been proposed recently and is an extension of classical logic. It allows for a uniform representation of various forms of definitions, including mono...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007